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Dynamic Reconfiguration for Management of
Radiation-Induced Faults in FPGAs

Maya Gokhale, Paul Graham, Michael Wirthlin, D. Eric Johnson, and Nathaniel Rollins

Abstract— This paper describes novel methods of exploiting
the partial, dynamic reconfiguration capabilities of Xilinx Virtex
V1000 FPGAs to manage single-event upset (SEU) faults due to
radiation in space environments. The on-orbit fault detection
scheme uses radiation-hardened reconfiguration controllers to
continuously monitor the configuration bitstreams of 9 Virtex
FPGAs and to correct errors by partial, dynamic reconfiguration
of the FPGAs while they continue to execute. To study the SEU
impact on our signal processing applications, we use a novel
fault injection technique to corrupt configuration bits, thereby
simulating SEU faults. By using dynamic reconfiguration, we
can run the corrupted designs directly on the FPGA hardware,
giving many orders of magnitude speed-up over purely software
techniques. The fault injection method has been validated against
proton beam testing, showing 97.6% agreement. Our work
highlights the benefits of dynamic reconfiguration for space-based
reconfigurable computing.

Index Terms— radiation effects, SEUs, FPGAs, proton accel-
erator, half-latches.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) offer significant
advantage over microprocessors for space missions, which are
characterized by demanding schedules, low budgets, and low
volume. SRAM-based (as opposed to anti-fuse) FPGAs are
especially appealing due to their in-situ reprogrammability
and high performance for signal processing tasks. However,
the use of commercial SRAM-based FPGAs in satellites and
spacecraft presents unique challenges in the presence of the
space radiation environment. Heavy ion testing [1] has shown
that Xilinx Virtex XQVR300 SRAM-based FPGAs are single-
event latchup (SEL) immune to up to a linear energy transfer
(LET) of 125 MeV-cm2/mg, but are sensitive to single-event
upsets (SEUs) at an average threshold LET of 1.2 MeV-
cm2/mg with an average saturation cross-section of 8.0×10−8

cm2. This means that in a Low Earth Orbit (LEO), the nine-
FPGA system we have built (Figure 1) can be expected to
experience radiation-induced upsets 1.2 times/hour in low
radiation zones and 9.6 times/hour when there are solar flares.

While it is highly desirable to exploit dense, dynamically
reprogrammable commercial SRAM-based FPGAs rather than
radiation-hardened anti-fuse parts with 1/10 the capacity, it
is clear that fault detection and mitigation must be addressed
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before these FPGAs can be deployed on satellites or spacecraft
for compute-intensive applications.

In this paper, we describe the crucial role of dynamic recon-
figuration in detecting and correcting SEU-induced transient
faults as well as detecting and isolating more serious perma-
nent faults. Our system has been built and will be launched
as an experimental payload in 2006 [2]. The system uses
dynamic readback and reconfiguration techniques to detect and
correct SEU faults in Xilinx Virtex V1000 FPGAs. Partial
reconfiguration can be used to detect and isolate permanent
faults. In addition, we use a novel fault injection method based
on dynamic reconfiguration to characterize SEU-induced con-
figuration bitstream faults and to study the effects of these
faults on the execution of our application set. This fault
simulation technique has demonstrated a 97.6% correlation
with the results found during a proton beam radiation study
[3].

II. FAULT DETECTION AND CORRECTION IN A

SPACE-BASED RECONFIGURABLE COMPUTER

Our reconfigurable computer will serve as space-based
reconfigurable radio. The chassis shown in Figure 1 is based
on the IEEE SEM-E standard [4]. This standard defines the
mechanical environment for a collection of modules plus
connecting backplane. In this assembly, each module consists
of two printed circuit boards bonded to a metal core. The core
dissipates heat into the spacecraft thermal management system.
A radiation-hardened microprocessor, a 30-MHz RAD6000,
controls the system and coordinates communication between
the spacecraft and experimental payload. Other system com-
ponents (see Figure 2) include non-volatile memory modules,
an A/D module receiving input from the radio, and the FPGA
compute modules (labelled “RCC” in the diagram).

The EEPROM provides 1MB of nonvolatile storage for the
operating system and microprocessor application code space.
The other printed circuit board on the EEPROM module holds
the spacecraft interface for 10Mbit communication between
the payload and ground station. The interface is used to
send commands to the payload, upload configurations for the
FPGAs, query state of health, and retrieve experimental data.

The 16MB flash memory module stores more than twenty
configuration bit streams for the Xilinx FPGAs (without
compression). Error control coding (ECC) is used to mitigate
SEUs that might occur while the memory is being accessed.
The EEPROM packaged with the FLASH memory is intended
for additional application configurations.

The A/D modules sample two 40MHz RF channels at an IF
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Fig. 1. Chassis of Space-Based Reconfigurable Radio

of 55-95MHz at 100MHz with 12-bit resolution. The digital IF
is transmitted to the network of FPGA modules for processing.

The FPGA modules are used to process the Intermediate
Frequency (IF) for ionospheric and lightning studies. The
objective is to detect and measure impulsive events that might
occur in a complex background, and to group together those
events that coincide geographically.

The signal processing is performed on three compute boards
containing a total of nine Virtex V1000s and 288 MB of
SDRAM organized in 8 M × 32-bit modules. The Virtex
FPGAs in our system are radiation-tolerant XQVR Virtex
FPGAs. While these FPGAs uses the mask sets of existing
commercial devices, they are fabricated on epitaxial silicon
wafers to provide SEL immunity.

A. Detecting and Correcting SEU-Induced Transient Faults

Figure 3 shows one board of the reconfigurable computer.
The FPGAs are organized in a ring. All the FPGAs have
identical pinout, so that the same configuration bit stream
may be loaded on any FPGA. The FPDP channels provide
high-speed paths to pass data among the FPGA boards. These
busses run at 50MHz with 32-bit data, giving at total band-
width of 200MB/s. The Actel FPGA controller is a radiation-
hardened anti-fuse FPGA that provides an interface to the
microprocessor. This device is used to load configurations onto
the FPGA. As importantly, the Actel serves as fault manager,
providing watchdog monitoring of the FPGAs. The Actel scans
each Xilinx FPGA for SEU faults by continuously reading
the FPGAs’ configuration bitstreams and calculating a cyclic
redundancy check (CRC) for each frame of each configura-
tion. The frame is the smallest granularity of reconfiguration
available on the Xilinx parts [5]. The calculated CRC is then
compared with a codebook of stored CRCs. The stored CRCs
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Fig. 2. Reconfigurable Radio Overview

are loaded from the FLASH module via the microprocessor
and are kept in local SRAM.

Using the Virtex SelectMAP interface, each configuration
is read every 180 ms while the FPGA is operating. There
is no interruption of service required to perform readback.
If an error is found, the microprocessor is interrupted and
notified of the specific device and frame that was corrupted.
This information is stored and later relayed back to the ground
station, contributing to the “State-of-Health” record of the
subsystem. The microprocessor fetches the original frame
bitstream segment from FLASH, partially reconfigures the
device to restore that frame (156 bytes for the XQVR 1000),
and then resets the system. Figure 4 shows the fault detection
and mitigation process.

The system also allows for artificial insertion of SEUs into
the Virtex parts using the microprocessor to partially configure
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the FPGA with ‘corrupt’ frames. This stimulates the system
to verify that the response to an SEU is correct at the logic
and software level. Extensive SEU testing can be done in this
way.

B. Detecting and Isolating Permanent Faults

In addition to continuous monitoring for SEU-induced
transient faults, readback and partial reconfiguration can be
used to detect permanent failures such as opens or shorts
within an FPGA. It is desirable to obtain maximum coverage
and isolation of hard faults with a minimum number of
configurations. Diagnostic configurations must be either stored
on-board or up-loaded from a ground station. Those stored
on-board must share resources with mission algorithms. A
configuration upload requires one pass over a ground station,
during which state of health data must be downlinked and
control parameters uplinked.

Coverage-optimized designs have been developed to test
the FPGAs on orbit [6]. These designs use Built-In Self
Test (BIST) so that the design itself contains stimuli and
result accumulation circuitry. The designs test the Configurable
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Logic Blocks (CLBs), the Block RAMs (BRAM), and the
wires connecting CLBs. CLB tests use a cascade of 34-
bit linear feedback shift registers (LFSR) whose inputs are
generated by a 6-bit LFSR-based counter. Adjacent 34-bit
register outputs are compared, and mismatches ripple through
to a CRC module, where the errors are latched. By using two
complementary design patterns that alternate placement of the
34-bit registers and 6-bit counters, all the CLBs can be tested
using two designs.

For BRAM testing, each location contains its own address
in both upper and lower byte, and comparison logic reads out
each location, logging mismatches between the bytes.

Single length wires are tested using one design that is
repeatedly partially reconfigured. Each CLB has 96 wires, with
24 in each of four directions. Twenty of the wires are part
of an output multiplexer. The test procedure first configures
the initial test data, filling Column 0 of the FPGA with zero,
and all other columns are configured as inverters, with all
flipflops initialized to zero. The CLBs are chained together,
each using the same output wire of the 96 available wires.
Then the clock is stepped once, and the configuration is read
back, checking for stuck-at-one faults. The clock is stepped
once more, and the configuration is read back to check for
stuck-at-zero faults in all the CLBs. The configuration is then
partially reconfigured to connect the CLBs using the next wire.
This sequence is repeated until all twenty of the wires has
been tested. A total of twenty partial reconfigurations and 40
readbacks are required to test 80 output wires of each CLB.
The remaining four wires in each direction that are not part of
the output multiplexer must be tested with a different design.
Figure 5 illustrates this process. For clarity, only four wires
are shown on the multiplexers.

C. Limitations to Readback-based Techniques

We note that there are limitations to this technique of
configuration readback to detect and correct SEU faults. First,
an error-free readback of the configuration bitstream does not
guarantee that an SEU did not occur. The FPGA contains
hidden state that cannot be read back, and upsets to hidden
state can conceivably cause errors in the design without any
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bitstream errors being detected. Further, SEUs in flip-flop
states can occur without disturbing the bitstream. Another
limitation relates to the use of look-up tables (LUTs) as
memory elements within Configurable Logic Blocks (CLBs).
If a LUT is used as a memory element and that memory
element is written while the readback operation is taking
place, the bitstream will be corrupted on readback. Thus we
must either disable the fault manager while running a design
that uses LUTs as memory elements or stop the clock to do
readback. For similar reasons, the on-chip Block SelectRAM
(or BRAM) memory cannot be reliably read back without
stopping the clock. Further, the output registers of the BRAMs
become corrupted during readback. Thus, for BRAM arrays,
error detection and correction must be handled via ECC
or checksums since readback of BRAM cannot be reliably
performed while the design is running.

Even with these limitations to dynamic reconfiguration on
the Virtex V1000 FPGAs, our reconfigurable radio represents
a revolutionary advance in space-based processing. First, our
choice of high performance SRAM-based FPGAs allows us
to perform complex signal processing algorithms in orbit. In
contrast, the current state of practice uses slow, expensive,
radiation-hardened electronics that is not capable of deployed
processing—data must be captured and then downlinked to
the ground, with all processing and analysis occurring on the
ground. Second, the use of reconfigurable FPGAs allows us to
upload new designs, enabling deployment of new algorithms
in the reconfigurable radio. The current state of practice uses
anti-fuse FPGAs or other fixed logic so that the algorithm is
fixed at launch time. Finally, our fault detection and correc-
tion scheme exploits the Virtex FPGA’s readback and partial
reconfiguration features, allowing us to correct the effects of
bitstream SEUs on the algorithms while they are running.

III. SINGLE EVENT UPSET SIMULATION

While it is important to detect and correct SEU-induced
configuration bitstream faults on-orbit, it is equally important
to understand the effect of faults on representative signal
processing algorithms that will be fielded. We are particularly
interested in detecting errors in signal processing results that
might occur as a result of SEU-induced faults in configuration
memory. A complementary aspect of our SEU-detection and
mitigation project is to induce faults artificially into our de-
signs and study the effects as the circuits function. For a given
application design, we can classify configuration memory bits
whose upset induces errors as being sensitive.

One method for inducing faults is to use ground-based
radiation sources as in [1]. We (and others, for example [7],
[8]) have put FPGAs under heavy ion (linear accelerator) and
proton (cyclotron) radiation and observed SEUs during both
static testing (i.e., the device is configured but the design is not
executing) and dynamic testing (i.e., the design is executing).
While testing has established that these radiation tolerant
FPGAs are latchup-immune and SEU sensitive, extensive
and repeated testing in the cyclotron is not feasible due to
availability and cost.
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Fig. 6. SEU Simulation on the SLAAC1V

A. The SEU Simulator

To study SEU fault effects on our designs without using the
cyclotron, we have developed a bench-testing methodology
based on dynamic reconfiguration. We use the simulator to
locate sensitive bits in configuration memory: bits whose upset
results in errors in application results. Our fault injection tool
accurately predicts the behavior of an FPGA design to within
98% [9].

We use an SEU simulator [10] that dynamically recon-
figures the FPGA under test with corrupted configurations.
Our testbed uses the SLAAC-1V PCI board from USC/ISI
[11]. This board has three Xilinx XCV1000 FPGAs, ten
256x36 ZBT SRAMs, and a PCI bus interface. The three
FPGAs are connected by a three-port crossbar and share
a common clock and reset. In addition, the board includes
a configuration controller—a Virtex XCV100 dedicated to
configuration loading, partial reconfiguration, and readback.

With this platform, we can load identical designs into the X1
and X2 FPGAs, start the clock, insert artificial configuration
upsets, and observe results (Figure 6). As the designs run, we
selectively modify the bitstream of the device under test (DUT)
to simulate a single-event upset within the configuration bit-
stream. With a modified bitstream operating on the device,
we monitor the effects of the configuration corruption by
comparing results produced from the two X1 and X2 FPGAs.
By performing a real-time comparision of the two FPGAs on
a clock-by-clock basis, the X0 design is able to detect when
configuration upsets in the DUT cause the design to deviate
from its expected behavior.

By using this simulation technique, we can locate the
sensitive configuration bits associated for each unique design.
A sensitive configuration bit for a particular design is a con-
figuration bit that defines the operation of an FPGA resource
used by the design under test. Since each user design will not
use the same FPGA resources, the configuration sensitivity
will vary from design to design. The purpose of the SEU
simulator is to quickly determine the configuration sensitivity
of any given user design.

We have obtained SEU simulation results for a variety of
user designs and continue to use the simulator to evaluate
designs intended for the space-based reconfigurable computer.
Table I lists the SEU sensitivity for several synthetic designs.
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TABLE I

SEU SIMULATOR RESULTS FOR TEST DESIGNS

Design Logic Failures Sensitivity Normalized

Slices Sensitivity

LFSR 18 2178 (15.8%) 667907 1.15% 7.3%

LFSR 36 4356 (31.5%) 137861 2.37% 7.5%

LFSR 54 6534 (47.3%) 208536 3.59% 7.6%

LFSR 72 8712 (63.0%) 279450 4.81% 7.6%

VMULT 18 583 (4.2%) 60929 1.05% 24.9%

VMULT 36 2206 (16.0%) 232239 4.00% 25.0%

VMULT 54 4781 (34.6%) 520747 8.96% 25.9%

VMULT 72 8308 (60.1%) 856802 14.75% 24.5%

MULT 12 144 (1.0%) 13263 0.23% 21.9%

MULT 24 561 (4.1%) 52454 0.90% 22.2%

MULT 36 1249 (9.0%) 122657 2.11% 23.4%

MULT 48 2205 (16.0%) 220197 3.79% 23.8%

The table identifies the size of the design and the number
of design failures observed in the SEU simulator. From these
results we can calcuate the sensitivity of the design to upsets
within the configuration memory. This result is obtained by
dividing the number of design failures by the total number
of configuration upsets. The LFSR 72 design, for example,
is sensitive to 4.81% of the bits within the configuration
bitstream. In addition, this table normalizes the configuration
sensitivity by factoring out the effects of area on the sensitivity
result. As expected, similar designs of varying sizes exhibit
very similar normalized sensitivity.

In addition to configuration sensitivity, our SEU simulator
can further categorize the sensitive bits into persistent and
non-persistent [12]. Persistent configuration bits introduce
permanent errors in the design state and can only be repaired
by both reconfiguring the offending bit and reseting the device.
Non-persistent bits, however, result in transient errors that
will eventually disappear. After the non-persistent sensitive
bit is repaired through traditional configuration scrubbing,
the design operates normally and does not require a reset.
Persistent bits are most often associated with state and control
functions. For example, Figure 7 illustrates error persistence
after the high bit of a counter has upset. After cycle 502, the
actual counter value never matches the expected result. The
design must be reset in order to re-synchronize the counter.

We applied our simulation approach to several additional de-
signs to identify the persistence of the configuration bitstream.
These results are shown for four desings in Table II. For
each design, the table provides the design size, configuration
sensitivity, and persistence ratio. The persistence ratio is the
ratio of persistent configuration bits to sensitive configuration
bits. As seen in this table, the persistence varies greatly
for each design. For our simple feedforward multiplier-adder
design, no persistent configuration bits were found. However,
the largely sequential nature of the LFSR design exhibits
a very large number of persistent configuration bits. The
persistent configuration bits ratio is an important parameter
that will be used to help the designer select the appropriate
SEU design mitigation strategy.

Fig. 7. Errors Induced by Persistent Configuration Bits

TABLE II

SEU SIMULATOR RESULTS FOR TEST DESIGNS

Design Logic Sensitivity Persistence

Slices Ratio†
54 Multiply-Add 4781 (39.0%) 8.87% 0%

36 Counter/Adder 36 (.3%) ,09% 9.88%

72 LFSR 8712 (71%) 4.2% 93.9%

LFSR Multiplier 6.4% 15.0%

Filter Preproc. 9.5% 1.2%

† Persistent bits per sensitive configuration bit

An important goal of our simulation is complete coverage
of the configuration bitstream, which can only be accom-
plished through fast, partial reconfiguration of the device under
test. We achieve rapid fault injection by using SLAAC-1V’s
high-speed PCI configuration mode along with the Virtex
SelectMAP configuration interface. On our testbed, a single bit
can be modified and loaded in 100 µs. The simulator, running
on the host with support hardware in X0, operates in a simple
loop:

• The simulator corrupts the next bit in the configuration
bitstream.

• The simulator partially reconfigures the DUT to load the
corrupted frame.

• While the clock is running, the comparator circuitry in
X0 checks for output discrepancies between the DUT and
“golden” designs.

• The simulator logs discrepancies to a file.
• The simulator corrects the current bit.

This process, shown in Figure 8, takes 214 µs, making it
possible to exhaustively test the entire bitstream of 5.8 million
bits in 20 minutes.
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By repeated exhaustive tests, it is possible to correlate a
single-bit upset in the bitstream with an output error. Such
a correlation table was developed for our example designs.
High correlation between specific locations in the bit stream
and output area helps to characterize the sensitive cross-section
of the design. Selective Triple Module Redundancy (TMR) or
other mitigation techniques can then be selectively applied to
the sensitive cross section.

We have experimented with two design classes that are
characteristic of our applications: feed-forward, data-path-
dominated designs to assess the impact of SEUs on compu-
tation hardware and designs with local feedback (e.g., linear
feedback shift registers) to assess the impact of error feedback.

As an example of the data-path-dominated design, Figure
9 shows a pipelined multiply-and-add circuit. In this parallel
tree of multipliers and adders, the A and B inputs are each
36-bits and the result is 72-bits.

The LFSR design is shown in Figure 10. It consists of
clusters of 20-bit wide LFSRs. Each LFSR cluster contains six
LFSRs whose outputs are XOR’ed to form one bit of output.
Since the SLAAC-1V testbed provides for 72 output pins, the
design contains 72 clusters.

B. SEU Simulator Validation

To assess the accuracy of our SEU simulator, we have also
benchmarked the simulator results against dynamic radiation

LFSR Module

LFSR Module

LFSR Module

....

72 bits

20 bit LFSR

20 bit LFSR

20 bit LFSR

20 bit LFSR

20 bit LFSR

20 bit LFSR

LFSR Module

Fig. 10. Linear Feedback Shift Register

testing. Radiation effects tests have been conducted at the
Crocker Nuclear Laboratory, University of California at Davis,
USA. This facility houses a 76-inch cyclotron that is used
to simulate radiation effects produced by solar and cosmic
radiation. During accelerator testing, a proton radiation source
was chosen so that there would be approximately one config-
uration upset per observation. Protons have a low interaction
rate, which makes this low rate feasible.

For accelerator testing, we use a SLAAC-1V board on a PCI
bus extender with the DUT FPGA in a socket so irradiated
FPGAs can be exchanged for new FPGAs when needed.
Sheets of .75” aluminum shield the FPGA board (except for
the DUT) and the PC host. The objective of radiation testing
is to operate the designs at speed (up to 20 MHz) in the
proton beam while appropriately adjusting the beam’s flux
so that about one bitstream upset occurrs during each .5-
second observation interval. Keeping the SEUs to about one
per observation more closely mimics the on-orbit occurrence
of SEUs since they are generally isolated events. The test
fixture for accelerator testing is diagrammed in Figure 11.

During the test, the output of the DUT is compared with the
“golden” part output, and differences are logged along with a
timestamp of the occurrence. At the same time, configuration
readback is performed at regular intervals, and, when an upset
is found, its position is recorded along with a timestamp. If an
upset is detected, the FPGA is partially reconfigured to repair
the configuration bitstream. If an output error is observed, both
designs are reset. The procedure is outlined in Figure 12. Each
iteration of the test loop takes about 430µ to complete.

During analysis, output errors that have been predicted by
the SEU simulator can be identifed. Analysis of the log data
showed a 97.6% correlation between output errors discovered
through radiation testing and output errors predicted by the
simulator [3]. This validates our bench testing methodology
and greatly reduces the number of radiation experiments that
must be conducted.

C. Half-Latches

As noted in Section II-C, actual radiation sources can affect
state on the FPGA that is not visible in the configuration bit
stream. The simulation approach of corrupting the bit stream
necessarily can only upset those parts of the FPGA that are
defined by configuration bits. While this represents 99.58% of
the sensitive cross-section of the FPGA, there is hidden state
on the FPGA that is not accessible through the bit stream.
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For instance, the state machines that control read or write
of configuration memory and programming of the device are
sensitive to SEUs. Upsets in these circuits are often easily
detected because the device becomes “unprogrammed.” Other
hidden state upsets are less easily diagnosed. Through detailed
comparison and analysis of simulated SEUs vs. SEUs observed
in the cyclotron, upsets of Virtex FPGA half-latches structures
have been revealed [13].

A half-latch in the Virtex FPGA is an internal FPGA
resource that efficiently provides constant logic values (one
or zero) throughout the device, a savings over the use of look-
up tables to store constants. Half-latches are found at the input
to logic resources such as Input Output Blocks (IOB), slices,
clock resources, and RAM blocks when there areno direct
sources for the input, i.e. the inputs are left unconnected.
The Xilinx Computer Aided Design (CAD) tools use half-
latches frequently to provide constants in circuits. We have
found that a large Virtex design can yse hundreds to thousands
of half-latches. Half-latches driving input multiplexers are
generally critical to design operation if used. Half latches
driving LookUp Table (LUT) inputs are not as critical since
LUTs are redundantly encoded so that if an unused input
attached to a half-latch is inverted, the LUT output is not
affected. Figure 13 is a simplified circuit-level representation
of a hlaf-latch. The half-latch is the PMOS transistor (T3)
and inverter pair between input NMOS transistors from the
routing netowrk and the resource input multiplexer. The half-
latch holds a “one” value when T1 and T2 are off. However,
T3 is a weak pull-up, so that it can be overridden by signals
from the routing network when T1 or T2 are on. In this
circuit the mux following the half-latch can select between
direct output or inverted output (“B” in Figure 13), so that the
circuit can supply logic 0 or 1 as needed in the encompassing
application circuit. When a Virtex FPGA is fully configured
(the configuration memory is updated and a start-up sequence
is executed), all half-latches in the device are initialized to the
proper state (1 at node A).

The half-latch circuit can experience SEUs, causing the
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output value to become inverted. The half-latch may recover
over time, but this is a stochastic process. Spontaneous re-
covery to original state was observed during proton testing.
However, the only reliable recovery process is to perform
a full reconfiguration with the standard start-up sequence.
Partial configuration does not restore the half-latch as it does
not execute the start-up sequence, and configuration bitstream
readback does not detect half-latch state.

Figure 14 illustrates the impact of half-latch upset. The
desired circuit is a flip-flop with clock enable always asserted,
as shown in Part (a). The CAD tool chooses a half-latch to
supply constant 1 to drive the clock enable (Part (b)). During
the start-up sequence associated with full configuration, the
half-latch is initialized to zero (Part (c)). When a proton upsets
the half-latch, its output is inverted, thus disabling the flip-
flop. The upset cannot be detected via readback nor repaired
via partial reconfiguration.
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(a) Flip-flop with
Clock Enable On
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(b) Half-latch Provides Constant 1
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(c) Half-latch Initialization
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(d) Half-latch SEU

Fig. 14. Half-latch illustration showing the intended circuit, the circuit’s
usual low-level implementation, the initialization of the half-latch at start-up,
and the result of a half-latch SEU.

There are several alternatives to the use of half-latches to
generate constants. A constant zero or one can be obtained
from external input and then used as the source of all other
constants required in the design. Alternatively, a constant
can be stored in a look-up table configured as a Read Ony

Memory (ROM). Finally, a flip-flop can be used to store
a constant. Design mitigation to remove half-latches is best
performed automatically rather than by the designer. To this
end, we have developed a half-latch removal tool RadDRC that
automatically removes half-latches from an application design.
The half latches are replaced either by constants from an
external source or by LUT ROM constants. Mitigated designs
were found to be 100X resistent to failure than unmitigated
designs, as observed under Crocker cyclotron testing [13].

IV. READBACK AND RECONFIGURATION: ARCHITECTURAL

IMPLICATIONS

Our choice of Xilinx FPGAs was driven by the desire
to read back the configuration data and partially reconfigure
the device. Readback, of course, enables bitstream SEU error
detection while partial configuration allows us to repair just
the portion of the bitstream that is corrupted as the design
runs, avoiding the overhead of stopping the design and then
completely reloading the programming data. With the utility
of partial configuration and readback for improving design
reliability in the space radiation environment come several
shortcomings with the current generations of Xilinx SRAM
FPGAs.

A. Readback

As pointed out in Section II, it may be difficult to use LUTs
as RAMs or shift registers on Xilinx Virtex FPGAs when using
configuration readback. As stated in [14], a LUT being used as
a RAM or shift register must not be written to as its contents
are being read out by the FPGA’s configuration circuitry since
doing so can corrupt the contents of the LUT. Further, the
CRC-based scheme described earlier for detecting errors in
bitstream frames must be altered to mask out the contents
of LUTs actively used as dynamic storage or a more bit-level
comparison must be made, again, masking out regions of LUT
state being used as RAM or shift-register storage.

Ideally, the FPGAs themselves could be designed so that this
dual access of the LUT memory could be performed without
corrupting the data. In a sense, the LUTs could be designed to
be something like a true dual-ported memory or a memory that
has a second “shadow” memory that can be read out without
affecting design operation. Another alternative is to design
the readback of LUTs so that their locations in the readback
stream are set to zeros when the LUTs are being used in RAM
mode. This would allow standard CRC checking to be done
to the bitstream without having to mask out some locations
and would not require dual-port access to the memories.

Since the volume of customers that actually try to perform
readback during device operation is fairly small, an FPGA
manufacturer such as Xilinx is not likely to make this sort
of change since it would increase the area (and therefore
the cost) of the their devices. Thus, we must compensate for
the readback limitations at the application design and system
levels.

At the design and system levels several approaches can and
have been taken to deal with this issue. Many do not want
to deal with the complexity of using LUTs as RAMs or shift
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registers during readback and so they are forced to completely
avoid the use of LUT RAMs and they must use flip-flops
for creating shift registers. For most of our designs, this is
the standard approach since we do want to use readback for
bitstream error location to help protect the integrity of our
designs without having to create design-specific methods for
handling readback.

Another approach is to not use readback at all to de-
tect configuration bitstream errors but use built-in self-test
techniques to periodically validate that the circuit is still
functioning correctly. In this case, if an error is found, the
test circuitry signals the configuration control circuitry that
a configuration error exists and that a full reconfiguration is
needed. This second approach was taken by Ray Andraka
[15] when designing the 4096-point FFT used in our space
application.

Yet another approach is to carefully design each application
so that the columns with the LUT memories can be skipped
during readback. This is not very convenient with the original
Virtex architecture since using a LUT as a shift register or
RAM in a single slice within a CLB column would require that
16 out of the 48 configuration data frames for that CLB column
not be read back when trying to detect bitstream SEU errors.
Further, if LUTs are being used as RAMs or shift registers
in both Slice 0 and Slice 1 of the CLB column, 32 out of
the 48 frames cannot be readback without causing the above
mentioned problems. For Virtex-II, the situation is better since
all of the LUT data for a given CLB column is contained
in two configuration data frames, so most of the bitstream
data for that column of CLBs can be read back during design
execution without disturbing the circuit.

Lastly, it should be possible to schedule design operations
and readbacks in such a way that they do not happen simulta-
neously for LUT resources. In the current approach used in our
space payload, the bitstream SEU mitigation process executes
asynchronously with regards to the operation of the FPGA
designs. If this were changed to be synchronous with design
operation and the LUT RAMs were not used continuously, it
might be possible to schedule the readback of the LUT RAMs
for when they are not being written. Alternatively, the design
could be created so that writes to LUTs are inhibited during
a readback process, or a portion thereof, to avoid the conflict.
This approach might work if portions of the design could be
stalled at appropriate times without seriously degrading the
design’s operation.

Block SelectRAM (BRAM) in Virtex has a similar access
conflict during readback plus another problem. During read-
back, the configuration logic takes over the address lines of
the BRAM so a design cannot read from or write to the RAM
during readback [14]. An additional problem with BRAM
and readback is that readback generally corrupts the internal
output register of the BRAM so use of the BRAM after
readback can be complicated. A work-around for the output
register corruption is possible by modifying the user’s design
(see [16]), but again, it would be much easier for the FPGA
user if the output register’s initial value was restored once
readback was complete by internal BRAM and/or configura-
tion circuitry. Further, to overcome the RAM access problem

during readback, the BRAM would effectively need a third
memory port so that the operation could be performed without
disrupting design operation.

B. Partial configuration

The main complication with using partial readback to repair
designs is the granularity of access to the configuration data.
With Virtex and Virtex II, the smallest portion of the bitstream
which must be read or written is a frame—a collection of
hundreds to thousands of bits. Forcing configuration data
operations to manipulate at least a frame of data at a time
was probably a compromise between providing the flexibility
of partial configuration and the silicon costs of implementing
partial configuration. In other words, Xilinx probably did
not want to pay the costs for full, bit-level random access
to the configuration bitstream data so they picked a larger
addressable block size.

As a result, the main complication of using partial config-
uration to repair designs in the presence of dynamic storage
resources (such as BRAMs or LUTs used as either RAMs or
shift registers) is that a read-modify-write (RMW) operation
really needs to be performed to fix bitstream SEUs. If a
configuration bitstream data frame is repaired with the orig-
inal bitstream data when RAMs or LUT-based shift registers
are contained in the design, the contents of these dynamic
resources will be overwritten with their original initialization
state, likely disturbing the operation of the design. For partial
configuration to be usable with the current generations of
FPGAs, the current state of the BRAM or LUT must be read
and then, either that state must be inserted into the original
bitstream frame or the readback bitstream frame must be
repaired and written back into the FPGA. The big assumption
for this to be successful is that the RMW operation can be done
before the contents of the RAM or shift register change—a big
issue for many designs.

One solution to this issue (as well as the readback issues
mentioned above) is to provide a smaller granularity for read
and write accesses to the configuration data. This way only
the bits that need to be read or written are touched, making it
easier to avoid accesses that might disturb circuit operation.

V. CONCLUSIONS

In this work, we show practical methods for exploiting
readback and dynamic reconfiguration to enhance reliability
of non-radiation-hardened FPGAs. Our methodology enables
data and compute intensive signal processing algorithms to fly
on satellites and in spacecraft. We have built a complete system
that judiciously balances radiation-hardened and radiation-
tolerant FPGAs to fulfill its goals—radiation-hardened FPGAs
are used to monitor, control, and reconfigure the compute
engine, which is built from radiation-tolerant FPGAs. Our
simulation methodology frees us from extensive beam testing
and gives complete, systematic, repeatable coverage of SEU
effects by using an FPGA board in a workstation. Simulation
results have been validated using proton radiation. We have
suggested several architectural, system, and application meth-
ods to overcome the limitations of readback/reconfiguration in
the current generation Xilinx Virtex FPGAs.
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